查看: 7326  |  回复: 1
回归正经——讲讲PID算法的来历和原理,及发展-1

主题

回复
发表于2019-02-17 02:52:45 | 只看该作者
1# 电梯直达

本文来讲讲PID算法,本人主讲历史沿革,CSDN博主主讲原理。。。。。。

不是我偷懒。。。。。。是人家写的实在太好了。。。。。。。。

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

历史

最早提出PID控制理念的是瑞典裔美国人奈奎斯特,他在一篇论文当中写到了采用图形的方法来判断系统的稳定性

在他的基础上,伯德等人建立了一整套在频域范围设计反馈放大器的方法,后被用于自动控制系统的分析和设计,

这也是PID算法最早从书面走向实践,实际上算法远比此有更长的历史,早在1917年就出现了论述PID控制方法的

论文。

于是在1936年,PID开始广泛的用于工业控制,虽然没有今天这样方便的可编程嵌入式芯片,但当时的人们也用了

堪称登峰造极的模拟电路控制,实现了不错的PID效果,难以想象那个年代人的创造力有多强。。。。。。。。。


下面有请CSDN大佬来讲。。。。。。。。。。。


比例控制算法
我们先说PID中最简单的比例控制,抛开其他两个不谈。还是用一个经典的例子吧。假设我有一个水缸,最终的控制目的是要保证水缸里的水位永远的维持在1米的高度。假设初试时刻,水缸里的水位是0.2米,那么当前时刻的水位和目标水位之间是存在一个误差的error,且error为0.8.这个时候,假设旁边站着一个人,这个人通过往缸里加水的方式来控制水位。如果单纯的用比例控制算法,就是指加入的水量u和误差error是成正比的。即 
u=kp*error 
假设kp取0.5, 
那么t=1时(表示第1次加水,也就是第一次对系统施加控制),那么u=0.5*0.8=0.4,所以这一次加入的水量会使水位在0.2的基础上上升0.4,达到0.6. 
接着,t=2时刻(第2次施加控制),当前水位是0.6,所以error是0.4。u=0.5*0.4=0.2,会使水位再次上升0.2,达到0.8. 
如此这么循环下去,就是比例控制算法的运行方法。 
可以看到,最终水位会达到我们需要的1米。 
但是,单单的比例控制存在着一些不足,其中一点就是 –稳态误差!(我也是看了很多,并且想了好久才想通什么是稳态误差以及为什么有稳态误差)。 
像上述的例子,根据kp取值不同,系统最后都会达到1米,不会有稳态误差。但是,考虑另外一种情况,假设这个水缸在加水的过程中,存在漏水的情况,假设每次加水的过程,都会漏掉0.1米高度的水。仍然假设kp取0.5,那么会存在着某种情况,假设经过几次加水,水缸中的水位到0.8时,水位将不会再变换!!!因为,水位为0.8,则误差error=0.2. 所以每次往水缸中加水的量为u=0.5*0.2=0.1.同时,每次加水缸里又会流出去0.1米的水!!!加入的水和流出的水相抵消,水位将不再变化!! 
也就是说,我的目标是1米,但是最后系统达到0.8米的水位就不在变化了,且系统已经达到稳定。由此产生的误差就是稳态误差了。 
(在实际情况中,这种类似水缸漏水的情况往往更加常见,比如控制汽车运动,摩擦阻力就相当于是“漏水”,控制机械臂、无人机的飞行,各类阻力和消耗都可以理解为本例中的“漏水”) 
所以,单独的比例控制,在很多时候并不能满足要求。


积分控制算法
还是用上面的例子,如果仅仅用比例,可以发现存在暂态误差,最后的水位就卡在0.8了。于是,在控制中,我们再引入一个分量,该分量和误差的积分是正比关系。所以,比例+积分控制算法为: 
u=kp*error+ ki?∫?∫error 
还是用上面的例子来说明,第一次的误差error是0.8,第二次的误差是0.4,至此,误差的积分(离散情况下积分其实就是做累加),∫∫error=0.8+0.4=1.2. 这个时候的控制量,除了比例的那一部分,还有一部分就是一个系数ki乘以这个积分项。由于这个积分项会将前面若干次的误差进行累计,所以可以很好的消除稳态误差(假设在仅有比例项的情况下,系统卡在稳态误差了,即上例中的0.8,由于加入了积分项的存在,会让输入增大,从而使得水缸的水位可以大于0.8,渐渐到达目标的1.0.)这就是积分项的作用。


微分控制算法
换一个另外的例子,考虑刹车情况。平稳的驾驶车辆,当发现前面有红灯时,为了使得行车平稳,基本上提前几十米就放松油门并踩刹车了。当车辆离停车线非常近的时候,则使劲踩刹车,使车辆停下来。整个过程可以看做一个加入微分的控制策略。 
微分,说白了在离散情况下,就是error的差值,就是t时刻和t-1时刻error的差,即u=kd*(error(t)-error(t-1)),其中的kd是一个系数项。可以看到,在刹车过程中,因为error是越来越小的,所以这个微分控制项一定是负数,在控制中加入一个负数项,他存在的作用就是为了防止汽车由于刹车不及时而闯过了线。从常识上可以理解,越是靠近停车线,越是应该注意踩刹车,不能让车过线,所以这个微分项的作用,就可以理解为刹车,当车离停车线很近并且车速还很快时,这个微分项的绝对值(实际上是一个负数)就会很大,从而表示应该用力踩刹车才能让车停下来。 
切换到上面给水缸加水的例子,就是当发现水缸里的水快要接近1的时候,加入微分项,可以防止给水缸里的水加到超过1米的高度,说白了就是减少控制过程中的震荡。

--------------------- 
作者:确定有穷自动机 
来源:CSDN 
原文:https://blog.csdn.net/qq_25352981/article/details/81007075 
版权声明:本文为博主原创文章,转载请附上博文链接!

感谢大佬的出场,给点掌声!


我开玩笑的,,,,,,,,,,,,,,,,,,,,,,,,


原文也加上了不少公式分析,推荐大家去看一下原文哦,这里仅是节选。

后续文章将讲讲实际的,比如如何用C语言实现PID算法,以及单片机代码


再会


主题

回复
发表于2019-02-21 09:25:10   |  只看该作者
2#
能不能讲讲如何整定PID参数?想学习学习

主题

回复
  • 温馨提示: 标题不合格、重复发帖、发布广告贴,将会被删除帖子或禁止发言。 详情请参考: 社区发帖规则
  • 您当前输入了 0 个文字。还可以输入 8000 个文字。 已添加复制上传图片功能,该功能目前仅支持chrome和火狐

禁言/删除

X
请选择禁言时长:
是否清除头像:
禁言/删除备注:
昵 称:
 
温馨提示:昵称只能设置一次,设置后无法修改。
只支持中文、英文和数字。

举报

X
请选择举报类型:
请输入详细内容:

顶部